SPECT 画像再構成条件が ^{99m}**TcO**₄ を使用した 甲状腺摂取率測定の定量性に与える影響

 長野
 圭司^{1,2)}
 高橋
 康幸¹⁾
 高井
 剛²⁾

 表
 孝徳³⁾
 板垣
 康²⁾

 福田
 祥子⁴⁾
 岡本
 泰之⁴⁾

- 1) 弘前大学保健学研究科
- 2) 関西電力病院放射線科 RI 室
- 3) 関西電力病院糖尿病・内分泌代謝センター
 - 4) 岡本甲状腺クリニック

Effects of SPECT Image Reconstruction Conditions on ^{99m}TcO₄ Thyroid Uptake Measurement

Keiji Nagano^{1, 2)}, Yasuyuki Таканаshi¹⁾, Go Такаі²⁾, Takanori Hyou³⁾ Yasushi Ітадакі²⁾, Yoshiko Fukuda⁴⁾ and Yasuyuki Окамото⁴⁾

1) Graduate Scool of Health Sciences, Hirosaki University
2) Department of Radiology RI Section, Kansai Electric Power Hospital
3) Center of Metabolism and Clinical Nutrition, Kansai Electric Power Hospital
4) Okamoto Thyroid Clinic
(article received: Feb 24, 2021)

Key words: Single photon emission computed tomography/ Computed tomography, Thyroid uptake, Filter back projection, 3-dimensional-ordered subsets expectation maximization

1. 緒 言

 99m Tc-pertechnetate(99m TcO $_{4}^{-}$)シンチグラフィは,甲状腺の形態と機能を同時に評価できる。また,Na¹²³Iを用いた甲状腺シンチグラフィと比較して,ヨウ素制限が不要であることや収集までの待機時間が短いなどの利点があることから広く普及している $^{1)}$ 。甲状腺機能の指標として用いられる 99m TcO $_{4}^{-}$ の甲状腺摂取率 $^{2)}$ (以下, 99m TcO $_{4}^{-}$ 摂取率)は,物理的半減期が短い純粋なガンマエミッタで甲状腺への被ばく線量が 123 Iを用いた場合に比べて少なく $^{3)}$,代謝されずに甲状腺へトラップされる。そして30分以内に早期に甲状腺に集積して,甲状腺の状態を正確に診断するための十分な情報を提供することができ, 123 I の甲状腺摂取率(以下, 123 I 摂取率)と相関することが示されている $^{4)}$ 。しかしながら, 99m TcO $_{4}^{-}$ 摂取率は, 123 I 摂

取率と比べ、甲状腺に取込まれるものの有機化されず、安定的に保持されないため、甲状腺機能正常化と機能低下を鑑別することは難しく、正確性に欠けるとされている⁵⁾。

従来、甲状腺シンチグラフィには Planar 画像と、それより算出される摂取率が用いられてきたが 6^{-9} 、 $9^{9m} TcO_4^-$ は Na^{123} I と比較して甲状腺摂取率が低く、集積低下をきたす病変では摂取率を正確に測定することが困難となることがある。近年の single photon emission computed tomography (SPECT) /computed tomography (CT) 装置の普及により、SPECT/CT による摂取率測定が試みられている 5^{5} 。SPECT/CT を用いて算出される摂取率は、Planar による摂取率よりも正確に測定可能であり、バセドウ病、甲状腺機能正常群、甲状腺炎を区別することができると報告されている 5^{5} 。SPECT 単体機であっても画像再構成を利用して

摂取率測定は可能であるが¹⁰⁾、SPECT/CT 装置の特徴を生かし、SPECT による機能情報と CT による形態画像を組み合わせることで診断能の向上を実現している¹¹⁾。さらに、臓器・組織の CT 値から減弱係数を推定する減弱補正によって SPECT 画像の定量性を改善させて、さらなる診断能向上が期待されている¹²⁾。

しかしながら、位置分解能補正組込 ordered subsets expectation maximization (OSEM) 法などの画像再構成法が摂取率測定に与える影響について検討された報告はない。一方、甲状腺以外の疾患に目を向けてみると、 123 I-FP-CIT SPECT では画像再構成によって定量値は変化をきたすとの報告 13 や、 99m Tc 製剤と比較して投与量が少ない 123 I 製剤を使用した局所脳血流量評価の 123 I-IMP 脳血流 SPECT では位置分解能補正組込法を使用することで定量値に優れた画像が得られたとの報告がされている 14 。

そこで今回,我々は,基礎的検討として,甲状腺ファントムと SPECT 性能評価ファントムによる実験を行い, 99m Tc O_{4} 摂取率測定に画像再構成法が与える影響について検討を行った。

2. 方 法

2-1. 使用機器, ファントムおよび核種

SPECT/CT 装置は、Symbia T6(SIEMENS 社製)を使用した。コリメータは、低エネルギー高分解能型(low energy high resolution: LEHR)を使用して、画像再構成および画像解析は専用ワークステーションの e.soft(SIEMENS 社製)を使用した。ファントムには、IAEA 甲状腺ファントムITS 型(サイズ ϕ 125×125 mm 京都科学社製)および SPECT 性能評価ファントム JS-10型(サイズ ϕ 270×236 mm 京都科学社製)を用い、核種には 99m Tc を使用した。

2-2. ファントム作成

甲状腺ファントム (**Fig. 1**) を使用して、甲状腺摂取率を評価するために 2 本のポリプロピレン製シリンジ (以下、シリンジ)を準備した。ひとつは標準線源として、臨床の $^{99m}TcO_4^-$ 甲状腺シンチグラフィでの投与量(185~MBq)を想定して、92.5 MBq/mLの $^{99m}TcO_4^-$ 水溶液 2~mL を入れたシリンジ (内容量 5~mL) を作成(甲状腺ファント

ム①)し、もうひとつは、実測定線源として、投 与量の 10%相当になる $9.25\,\mathrm{MBq/mL}$ の $99\mathrm{mTcO_4^-}$ 水溶液 $2\,\mathrm{mL}$ を入れたシリンジ(内容量 $5\,\mathrm{mL}$)を 作成(甲状腺ファントム②)した。

SPECT 性能評価ファントムのディスク 1 には、甲状腺ファントムと同様に投与量の 10%相当の $99\text{m}\text{TcO}_4^-$ 水溶液18.5 MBq を封入した 30 mm ロッドを 1 倍濃度として放射能濃度を 1/2, 1/4, 1/8 に調整した 30 mm ロッドを計 4 本装着した。一方、ディスク 2 には、同じ放射能濃度の $99\text{m}\text{TcO}_4^-$ 水溶液(約 710 kBq/mL)を封入したディスクに 左端から 7, 10, 15, 20, 30 mm ロッドを 5 本装着した。バックグラウンド部に水を満たし15),作成した(**Fig. 2**)。

2-3. 画像収集条件および画像再構成条件

甲状腺ファントムに対する収集条件は、メインウィンドウを $140 \text{ keV} \pm 10\%$ として設定を行い、散乱線補正として dual energy window(DEW)法に用いる低エネルギー側サブウィンドウを $112 \text{ keV} \sim 126 \text{ keV}$ とした。Planar では、マトリックスサイズ 256×256 ,拡大率2.0倍,ピクセルサイズ 1.2 mm,コリメーター被写体間距離 120 mm で収集を行い、SPECT では、マトリックスサイズ 128×128 ,拡大率2.0倍,ピクセルサイズ 2.4 mm,1 ステップ 3 度,180度対向 360度のステップ回転収集で回転半径を 250 mm で行った。

Fig. 1 甲状腺ファントム 真上から見たポリプロピレン製シリンジの挿入位置

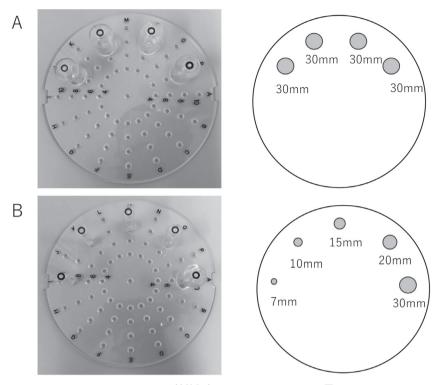
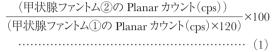


Fig. 2 SPECT 性能評価ファントムのロッド配置図 A; ディスク 1 (30 mm ロッド 計 4 本), B; ディスク 2 (7 mm~30 mm ロッド 計 5 本)

Planar は、当施設での甲状腺シンチグラフィ(摂 取率測定) の標準線源測定と実測定の収集時間を 参考にし、標準線源測定を考慮した甲状腺ファン トム①では Planar 10秒, SPECT 1 ステップ 1 秒 と設定し、実測定を考慮した甲状腺ファントム② では、Planar 20分、SPECT 1 ステップ 10秒と設 定した。SPECT 性能評価ファントムは、甲状腺 ファントムの SPECT 収集と同じ条件で、収集を 行った。さらに、甲状腺ファントム②と SPECT 性能評価ファントムは、封入した放射能量がそれ ぞれ 1/2. 1/10 に減衰する時刻に、甲状腺ファン トム②は Planar と SPECT 収集を、SPECT 性能 評価ファントムは SPECT 収集を行った。CT 撮 影条件は、被ばく低減方法である SIEMENS 社の CARE Dose 4D(自動管電流調整機能)を使用して、 管電圧130 kV, Rotation time: 0.6 s, Pitch: 0.85, Quality ref. 30 mAs に設定した。


画像再構成には、filtered back projection法(FBP)、OSEM 法(2D-OSEM)、コリメータ開口補正組込OSEM法(3D-OSEM: Flash 3D)を用い

た。FBP は、前処理フィルタに Butterworth filter (cutoff: 0.35 nyquist, order: 8), 2D-OSEM 11 subset 6, iteration 10, 後処理フィルタに Gaussian filter (FWHM: 4 mm), 3D-OSEM 1 subset 6, iteration 10, 後処理フィルタに Gaussian filter (FWHM:4mm) として、当施設で使用してい る副甲状腺 SPECT の臨床条件を参考に設定した。 CT を用いた吸収減弱補正 (CT-based attenuation correction: CTAC) の有無、DEW 法を用いた散 乱線補正 (scatter correction: SC) の有無として, 2D-OSEM は散乱線補正を行わず、吸収減弱補正 有 (CTAC+/SC-) と無 (CTAC-/SC-) の 2 通り、3D-OSEM は CTAC の有無及び SC の有無 として、それぞれCTAC+/SC+、CTAC+/SC -, CTAC-/SC+, CTAC-/SC-の4通り, 計 6 通りの条件にて画像処理を行った。尚、散乱線 補正は, OSEM 組込みの DEW を使用した。但し、 SIEMENS 社製の e. soft には 2D-OSEM のソフト に組込型の散乱線補正が設定されていないため検 討していない。

2-4. 甲状腺摂取率の評価

甲状腺ファントム①と甲状腺ファントム②の Planar 画像の集積する部分に矩形 Region of Interest (ROI) を設定して、Planar のカウント比から甲状腺摂取率(以下、Planar 摂取率)を算出した。また、SPECT 画像に CT 画像を基に作成した Volume of Interest (VOI) を設定してカウント値を測定し、SPECT による甲状腺摂取率(以下、SPECT 摂取率)を算出した (Fig. 3)。

Planar 摂取率 (%)=

SPECT 摂取率 (%) =

 (甲状腺ファントム②の SPECT カウント(cps))
 ×100

 (甲状腺ファントム①の SPECT カウント(cps)×10)
 (2)

2-5. **SPECT** 性能評価ファントム画像の評価 2-5-1. 濃度直線性の評価

ディスク 1 の 4 本の異なる放射能量を封入した 30 mm ロッドに、CT 画像を基に作成した VOI を設定して総カウント値を測定した。VOI の設定は、各ロッドの中心付近の axial 断面(1 スライス)に対して CT 画像を参照して行い、SPECT 画像の同位置にコピーした。各ロッドに設定した VOI の総カウント値を 99m TcO $_4$ 水溶液 18.5 MBq

を封入した $30 \, \text{mm} \, \text{ロッドの総カウントで除し,}$ 計 $3 \, \text{回の収集の平均値を算出した (Fig. 4)}$ 。 さらに,最小 $2 \, \text{乗法を用いて回帰式,} \, \text{相関係数 (r),}$ p 値で評価を行った $^{5)}$ 。

2-5-2. リカバリ係数の評価

ディスク2の7, 10, 15, 20, 30 mm ロッド に CT 画像を基に作成した VOI を設定し、前田 らの報告に従って、平均カウントからリカバリ係 数を算出した 16 。 VOI の設定は、各ロッドの中心付近の axial 断面(1 スライス)に対して CT 画像を参照して行い、SPECT 画像の同位置にコピーした。リカバリ係数は、各ロッドに設定した VOI の平均カウントを 30 mm ロッドの平均カウントで除した値とし、計 3 回の収集の平均値を算出した(**Fig. 5**)。

リカバリ係数 (%)=

3. 結果

3-1. 甲状腺摂取率

Fig. 6 に結果を示す。甲状腺ファントム②の画像から各画像再構成を行って算出された SPECT 摂取率は、封入した放射能量が 18.5 MBq において、3D-OSEM の(CTAC-/SC-)では 9.54%、(CTAC+/SC-)では 9.51%、(CTAC-/SC+)では 9.59%、(CTAC+/SC+)では 9.54%であっ

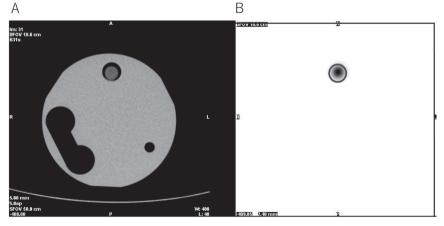
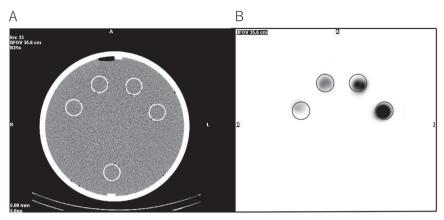
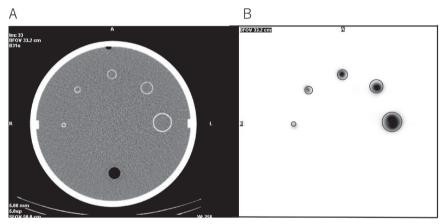




Fig. 3 甲状腺ファントムより得られた CT 画像 (A) および SPECT 画像 (B) に対する甲状腺摂取率の評価のための関心領域の設定

Fig. 4 SPECT ファントムより得られた **CT** 画像 (**A**) および **SPECT** 画像 (**B**) に対する濃度直線性の評価のための関心領域の設定

Fig. 5 SPECT ファントムより得られた **CT** 画像 (**A**) および **SPECT** 画像 (**B**) に対するリカバリ係数の評価のための関心領域の設定

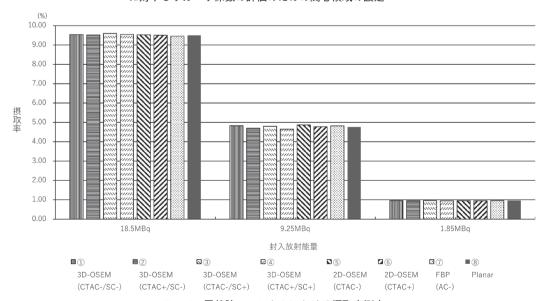


Fig. 6 甲状腺ファントムにおける摂取率測定

た。2D-OSEM の(CTAC -)では 9.53%,(CTAC +)では 9.50%であった。また、FBP では 9.57%であった。そして封入した放射能量が 9.25 MBqにおいて、3D-OSEM の(CTAC - /SC -)では 4.83%,(CTAC + /SC -)では 4.70%,(CTAC - /SC +)では 4.80%,(CTAC + /SC +)では 4.65%であった。また、2D-OSEM の(CTAC -)では 4.87%,(CTAC +)では 4.78%であった。また、FBP では 4.73%であった。さらに封入した放射能量が 1.85 MBqにおいて、3D-OSEM の(CTAC - /SC -)では 0.95%,(CTAC + /SC -)では 0.95%,(CTAC + /SC -)では 0.95%,(CTAC - /SC +)では 0.95%,(CTAC + /SC +)では 0.94%であった。また、2D-OSEM の(CTAC -)では 0.95%,(CTAC + /SC +)では 0.94%であった。また、FBP では 0.94%であった。

一方, 甲状腺ファントム②の Planar 摂取率 (**Fig. 6**) は, 封入した放射能量が 18.5 MBq, 9.25 MBq, 1.85 MBq において, それぞれ 9.50%, 4.76%, 0.96%であった。

3-2. 濃度直線性

SPECT 性能評価ファントムにおける再構成方法 3D-OSEM, 2D-OSEM, FBP と CT 減弱 補正 および散乱補正の組み合わせによる濃度直線性を それぞれ Fig. 7, 8,9 に示す。全ての再構成方法および補正の組み合わせにおいて、放射能度比の平均値と希釈倍数の関係は、非常に良好な相関関係 (r>0.99, p>0.05) を示した。

3-3. リカバリ係数

各画像再構成法のリカバリ係数を Fig. 10 に示す。2D-OSEM では、2D-OSEM (CTAC-)が2D-OSEM (CTAC+)よりも良好であったが、いずれも 10 mm ロッド、15 mm ロッドのリカバリ係数が3D-OSEM に比べて低値を示した。3D-OSEM では、3D-OSEM (CTAC-/SC-と CTAC-/SC+)が3D-OSEM (CTAC+/SC+と CTAC+/SC-)よりも良好であった。また、3D-OSEM のいずれも 15 mm ロッドにおいてリカバリ係数が0.80以上となり、20 mm ロッドと比較して上昇が認められた。

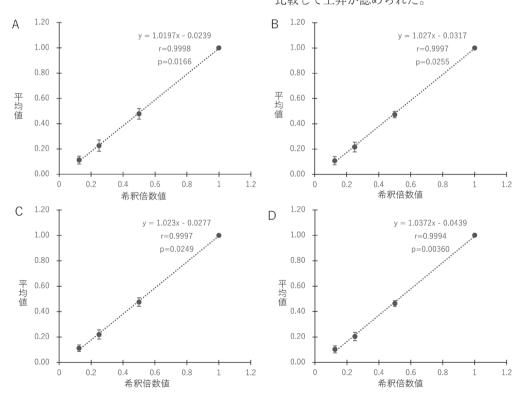


Fig. 7 3D-OSEM における濃度直線性 A;3D-OSEM (CTAC-/SC-), B;3D-OSEM (CTAC+/SC-), C;3D-OSEM (CTAC-/SC+), D;3D-OSEM (CTAC+/SC+)

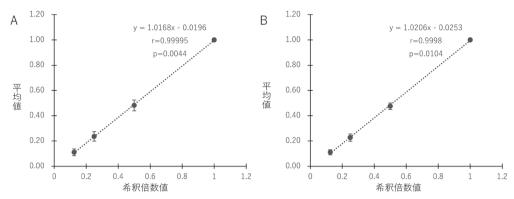


Fig. 8 2D-OSEM 法における濃度直線性 A; 2D-OSEM(CTAC+), B; 2D-OSEM(CTAC+)

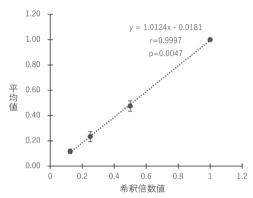


Fig. 9 FBP における濃度直線性

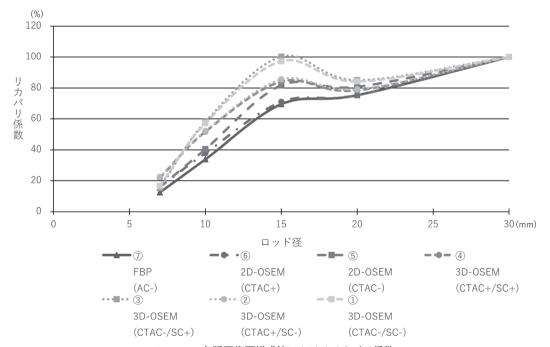


Fig. 10 各種画像再構成法におけるリカバリ係数

4. 考 察

本検討では、SPECT/CT 装置を用いて、甲状腺ファントムと SPECT 性能評価ファントムによる実験を行い、SPECT を用いた 99m TcO $_4$ 摂取率と、各画像再構成法及び補正における濃度直線性とリカバリ係数を評価した。

甲状腺ファントム実験では、甲状腺摂取率の評価を各画像再構成法(FBP, 2D-OSEM, 3D-OSEM)から得られた SPECT 摂取率と Planar 摂取率の差は、封入放射能量が $18.5 \,\mathrm{MBq}$ では、 $0\sim0.09\%$ 、 $9.25 \,\mathrm{MBq}$ では $-0.06\%\sim+0.11\%$, $1.85 \,\mathrm{MBq}$ では $-0.02\%\sim-0.01\%$ であった。 3種の再構成法、いずれも差がほとんどなかった。 筧によると、 131 I を用いた甲状腺摂取率測定法では測定誤差が 10%以上存在していると報告している 170。核種は違うが摂取率の算出する考え方は同じであり、SPECT 摂取率と Planar 摂取率は同等であると考えることができる。

これらの結果より、Lee らの検討と異なり、本検討の方法によって求められる SPECT 摂取率は、作成したファントムの濃度である 10%、5% および 1%においては Planar 摂取率と同様に甲状腺摂取率を評価することが可能であると考えられる。なお、今回の SPECT 摂取率を求めるにあたり、SPECT の収集時間は検討を行わなかった。

SPECT 性能評価ファントム実験による濃度直線性は、30 mm ロッド(18.5 MBq)を基準に放射能量を1/8 まで減量したが、今回検討を行った放射能濃度の条件では、いずれの画像再構成法も濃度直線性は良好であった。これらの結果は、Lee らの SPECT/CT の OSEM 法を用いた検討⁵⁾と同様であり、いずれの画像再構成法においても、放射能濃度は SPECT 摂取率の定量性に影響しないことが示唆された。

また、SPECT 性能評価ファントム実験による リカバリ係数は、FBP や 2D-OSEM が 3D-OSEM よりも、10 mm や 15 mm ロッドにおいて小さ く、3D-OSEM が良好な結果を示した。一方、 2D-OSEM と 3D-OSEM においては、CTAC-の方 が CTAC+よりも良好な結果を示していた。特に 15 mm ロッドにおいて、CTAC-と CTAC+では、 リカバリ係数に乖離がみられた。3D-OSEM においては位置分解能補正におけるギブス振動による過補正のアーチファクトが知られており $^{16,18,19)}$,また、CTAC も過補正のアーチファクトが報告されている $^{20)}$ 。散乱線補正の有無については、画像内のノイズ量が異なることが知られているが $^{21)}$,集積を表す定量指標である standardized uptake values (SUV)を評価した報告によると $^{22)}$,散乱線補正を行わないほうがカウント不足にならず SUVの精度が向上すると推察している。過去の研究において、精度の高い SUV を得るためには散乱線補正が必要であることが示されているが $^{23)}$,本検討における散乱線補正の詳細な検討は今後の課題としたい。

本検討で算出した SPECT 摂取率は、Planar 摂取率と同様に臨床応用できる可能性が示唆され、画像再構成法としては 3D-OSEM の CTAC - が最も適していた。各画像再構成法により、部分容積効果やギブス振動によるアーチファクト、吸収補正が定量性に与える影響の程度が異なっており、臨床応用する際は注意が必要である。

5. 結 論

甲状腺ファントムを用いて、SPECT 摂取率をPlanar 摂取率と同様の方法で算出可能であった。SPECT 性能評価ファントム実験では、濃度直線性はいずれの画像再構成法も良好であった。リカバリ係数においては 3D-OSEM の CTAC – が良好な結果を示した。部分容積効果やアーチファクト、吸収補正が SPECT 摂取率の定量性に影響を生じる可能性があるため、臨床使用する際には、特性を把握してから使用する必要がある。

6. 謝 辞

本検討を遂行するにあたり、情報提供を頂いた シーメンスヘルスケア(株)の荒井弘之氏、長谷川 大輔氏と富士フイルム富山化学(株)の河上一公 氏、野村茂樹氏に深く感謝いたします。

7. 利益相反と倫理的配慮

筆頭著者および共著者全員に開示すべき利益相 反はない。

8. 引用文献

- 森 豊. 甲状腺疾患の核医学検査. 耳鼻咽喉科 展望 2002; 45(4): 296-302
- Giovanella L, Avram AM, Iakovou I, et al. EANM practice guideline/SNMMI procedure standard for RAIU and thyroid scintigraphy. Eur J Nucl Med Mol Imaging 2019; 46(12): 2514–2525
- 3) 三枝健二,内山 暁,川名正直,他. ¹²³I による甲 状腺摂取率測定シンチグラフィ. RADIOISOTOPES 1976;**25**(2):82-88
- 4) 鈴木雅紹, 森川正浩, 宮本義勝, 他. 甲状腺摂 取率とシンチグラフィー. 核医学 1978; **15**(1): 91-100
- Lee H, Kim JH, Kang Y, et al. Quantitative singlephoton emission computed tomography/computed tomography for technetium pertechnetate thyroid uptake measurement. Medicine 2016; 95: 27 (e4170)
- 6) 藤田 透,森 徹,高坂唯子,他. ^{99m}Tc pertechnetate による甲状腺ルチン検査. 核医学 1977; **14**(6):827-840
- Williams ED, Glass HI, Goolden AW, et al. Comparison of two method of measuring the thyroidal uptake of 99mTc. J Nucl Med 1972; 13(2): 159-62
- 8) 浜 本 研, 鳥 塚 莞 爾, 森 徹, 他. ^{99m}Tc pertechnetate による甲状腺機能検査について. 最 近医学 1967; **22**(3):473
- 9) Sodee DB. The study of thyroid physiology utilizing intravenous sodium pertechnetate. J Nucl Med 1966; **7**(7): 564–567
- 10) 小野宗一, 平藤貴之, 倉部 淳, 他. 甲状腺ョウ 素摂取率における SPECT 法の検討. 山形県病医 誌 2000; 34(1):17-20
- 11) Zeintl J, Vija AH, Yahil A, et al. Quantiative accuracy of clinical 99mTc SPECT/CT using orderedsubset expectation maximization with 3-dimensional resolution recovery, attenuation, and scatter correction. J Nucl Med 2010; 51 (6): 921–928
- 12) 中西健介,坂田励起,高木昭浩,他. ⁶⁷Ga-SPECT 定量法開発に向けた基礎的検討.日本放射線技術学会 2017;**73**(1):12-19
- 13) 亀井山弘晃, 松友紀和, 長木昭男, 他. ¹²³I-FP-CIT SPECT における画像再構成方法が定量性と

- 診断能に与える影響. 日本放射線技術学会雑誌 2016;**72**(7):595-601
- 14) 浅津 輝, 林万寿夫, 新井真美, 他. 逐次近似 SPECT 再構成法の ¹²³I-IMP 局所脳血流量定量へ の応用—最適な再構成法と前処理フィルタの遮断 周波数に関する検討—. 日本放射線技術学会雑誌 2013:**69**(5): 535-544
- 15) 中村祐也, 富口静二, 勝田 昇. 心筋 SPECT 検査における collimator detector response (CDR) 補正と effective scatter source estimation (ESSE) 法による散乱線補正の有用性. 日本放射線技術学会雑誌学誌 2010; 66(6):609-617
- 16) 前田幸人, 長木昭男, 古味省宏, 他. ボディファントムを用いた SPECT 位置分解能補正組込 OSEM 再構成法についての基礎的検討. 日本放 射線技術学会雑誌 2015: **71**(11): 1070-1079
- 18) Onishi H, Motomura N, Fujino K, et al. Quantitative performance of advanced resolution recovery strategies on SPECT images: evaluation with use of digital phantom models. Radiol Phys Technol 2013; 6(1): 42-53
- 19) 大西英雄,本村信篤,藤埜浩一,他.数値ファントムを用いた最新鋭 SPECT の位置分解能補正の基礎的検討.日本放射線技術学会雑誌 2012;68(6):686-696
- 20) 井口治巳, 木田哲生, 野間和夫, 他. 低線量 CT を利用した SPECT 減弱補正に関する検討. 日本 放射線技術学会雑誌 2006:**62**(6):840-847
- 21) Miwa K, Nemoto R, Masuko H, et al. Evaluation of quantitative accuracy among different scatter corrections for quantitative bone SPECT/CT imaging. PLoS One 2022; 17 (6): e0269542.
- 22) 中村優斗, 甲谷理温, 阿部俊憲, 他. ^{99m}Tc を使用した体幹部 SPECT および SPECT/CT における SUV 制度向上のための評価: BCF 算出ファントムと画像再構成時の補正法の最適化. 日本放射線技術学会雑誌 2021: **77**(9): 921-931
- 23) Jaszczak RJ, Greer KL, Floyd CE, et al. Improved SPECT quantification using compensation for scattered photons. J Nucl Med 1984; 25(8): 893– 900